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Abstract—A generalized theory for laminated plates, including delamination, is developed. The
laminate model is based on a generalized displacement formulation implemented at the layer level.
The equations of motion for a layer, which are explicitly coupled with both the interfacial traction
continuity and the interfacial displacement jump conditions between layers, are used to develop the
governing equations for a laminated composite plate. The delamination behavior can be modeled
using any general constitutive fracture law. The interfacial displacement jumps are expressed in an
internally consistent fashion in terms of the fundamental unknown interfacial tractions. The current
theory imposes no restrictions on the size, location, distribution, or direction of growth of the
delaminations. Therefore, the theory can predict the initiation and growth of delaminations at any
location as well as interactive effects between delaminations at different locations within the laminate.

The proposed theory is used to consider the dynamic response of laminated plates in cylindrical
bending. First it is shown that the dynamic implementation agrees well with the exact predictions
of a plate under static loading conditions. Static, cylindrical bending is considered to validate the
numerical implementation. Next, different dynamic loading cases are considered. First, the required
level of discretization through the thickness of the laminate necessary to accurately capture the wave
propagation characteristics for monotonic tensile loading transverse to the plate is determined.
Next, the influence of the delamination on the free vibration behavior of a plate is considered. It is
shown that the presence of delaminations can result in significant deviations from the perfectly
bonded free vibration behavior. Finally, the plate is subjected to dynamic loading conditions that
demonstrate the influence of internal wave interactions on the overall behavior of the plate. © 1997
Elsevier Science Ltd.

1. INTRODUCTION

The use of laminated composite structures has many potential applications in a variety of
engineering fields. Laminated structures are susceptible to delaminations between layers
due to the low transverse strength at the interlaminar interfaces. Typically, delaminations
in fibrous composites propagate along the fiber/matrix interfaces adjacent to the resin rich
interlaminar region (Fig. 1). The presence of delaminations can cause significant degra-
dation of the structural response characteristics. Therefore, analytical tools, which can
accurately predict the behavior of delaminated structures as well as provide insight into
methodologies for controlling delamination behavior, are valuable. The use of three-dimen-
sional computational elements to predict the response of thin laminated structures to
dynamic loads is inconvenient because of the number or aspect ratio of elements necessary
to obtain numerical solutions. Therefore, an accurate plate or shell model for laminated
structures is desirable.

Numerous applications of laminated structures require the support of dynamic or
impact loads. Dynamic loading conditions can be induced by low velocity impacts (e.g.
resulting from dropped tools), high velocity impacts (e.g. projectile impact), or simply as
a result of the structural design and application. Structural deformation, tensile wave
propagation transverse to the interfaces, or vibrational fatigue resulting from these loading
conditions can result in the initiation of delamination damage. In some cases, such as low
velocity impacts, there may be little visible damage at the structure surface even in the
presence of significant damage within the composite. The presence of a delamination can
result in redistributions of the internal stresses within the structure. These redistributions can
result in the arrest of existing damage as well as the initiation and growth of delaminations in
other regions within the structure. These issues imply that the extent of delamination
damage is not known a priori. It cannot be assumed that the continued growth and direction
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of growth of a delamination is self-similar. Both the initiation and growth of the damage
must be accurately predicted to effectively model the behavior of a laminated structure in
the presence of delaminations.

A plethora of work has been published concerning the behavior of delaminated struc-
tures. A partial review of some of the early work in this area was provided by Storakers
(1989). More recent work has been considered in a review of Bolotin (1996). Typically,
delamination behavior has been modeled using empirical delamination criteria (Ramkumar
and Chen, 1983 ; Ramkumar and Thakar, 1987) or virtual crack extension methods (Bar-
bero and Reddy, 1991 ; Chattopadhyay and Gu, 1994 ; Zheng and Sun, 1995 ; Galea er al.,
1995; Rinderknecht and Kroplin, 1995; Kutlu and Chang, 1995; Chen ez al., 1995; Hu
and Hwu, 1995; Ju et al., 1995; Lo et al., 1993 ; Finn and Springer, 1993). Current crack
extension methods have exhibited difficulties under mixed mode deformations (Sun and
Qian, 1996; Narayan and Beuth, 1996). Less work has been pursued using interfacial
constitutive laws to model delamination (Liu er al., 1994). This work has been limited to
the use of a simple linear model for the interfacial constitutive behavior. A linear delarni-
nation model can be used to study the initiation of delamination. However, this type of
model can not be used for large interfacial displacement problems because in these situations
the delamination growth is highly nonlinear (Needleman, 1987, 1990 ; Corigliano, 1993).
Furthermore, this work has been restricted to elastic behavior due to the a priori implemen-
tation of the lamina elastic constitutive relations in satisfying the interfacial traction con-
tinuity conditions. History dependent behavior is a phenomena inherent to all composite
materials.

A higher-order, discrete layer analysis, where each lamina is modeled individually, has
the potential to correctly model delamination behavior because the individual interfaces
are not smeared. Furthermore, a discrete layer theory can accurately predict local, nonlinear
behavior such as plasticity and damage, which influences delamination. Recently, a for-
mulation that is capable of incorporating any general nonlinear interfacial fracture model
into a general plate theory was developed (Williams and Addessio, 1996). This approach
was shown to provide excellent agreement with an exact solution under static loading
conditions for delaminated plates. This approach can provide reasonable computational
efficiency because of its two-dimensional nature while providing accurate predictions for
the structural behavior.

The constitutive behavior for the fracture of interfaces, such as the interface between
lamina within a composite structure, can be modeled by the following general relation
(Aboudi, 1991 ; Needleman, 1987 ; 1990 ; Mcgee and Herakovich, 1992 ; Corigliano, 1993).

A = fillA 1) )]

where A, is the jump in the displacement field across the interface and ¢, = oy, #; is the
interfacial traction vector. The unit normal to the interface and the stress field are n, and
o, respectively. In general, the constitutive relations for the jumps in the displacement
field, fi(A;, t,), are a nonlinear function of A; and ¢,. An accurate assessment of the interfacial
traction is required to correctly predict delamination, using eqn (1). Changing the form of
the delamination law should not require reformulating the entire plate theory.

In the current work, a formulation for a generalized theory of laminated plates in the
presence of delaminations is presented (Williams and Addessio, 1996). The governing
equations for the response of a single layer are developed and these equations are sub-
sequently coupled through the explicit imposition of both interfacial traction continuity
and the jump conditions for the interfacial displacements to develop the governing equations
for a laminate. The basic variables of the resulting theory are the layer velocities and the
interfacial tractions between layers. By treating the interfacial tractions as fundamental
unknowns, an internally consistent evaluation of these effects is directly obtained from the
formulation. The formulation is not restricted to the analysis of pre-existing delaminations
and can predict the initiation and growth of delaminations. Additionally, the model is
formulated in a sufficiently general fashion that any interfacial fracture model can be
incorporated in an internally consistent fashion without reformulating the theory. Local
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effects, such as the inelastic response of the lamina, can be modeled with any desired
accuracy because no restrictions are imposed on the layer constitutive relations or the order
of the approximation for the fields through the thickness of the layers. Finally, the resulting
theory is completely general with respect to the thickness of the laminated structure.

The proposed formulation is used to consider the influence of delamination initiation
and growth on the dynamic behavior of laminated plates. The numerical implementation
of the theory is validated by comparison with an extension (Williams and Addessio, 1996)
of the exact static solution (Pagano, 1967) for plates in cylindrical bending. This extension
models the effects of delamination. Next, the appropriate level of discretization in the
transverse direction that is necessary to accurately simulate the dynamic response in cyl-
indrical bending is considered. The influence of delamination on the free vibration behavior
of a cross-ply plate is considered. Finally, the influence of internal wave propagation
and reflection on the overall response of a laminate in the presence of delaminations is
investigated.

2. GENERAL FORMULATION

The following notational conventions are used throughout the formulation. Super-
scripts will denote the number (or order) of the approximation function. Subscripts denote
tensorial quantities. Greek subscripts have a range of x and y. Roman subscripts have a
range of x, y and z. Repeated superscripts and subscripts imply summation over the
appropriate range. A comma denotes differentiation with respect to the spatial coordinates.
A dot denotes differentiation with respect to time.

A single computational layer (k) is considered (Fig. 2). It is assumed that the velocity
field (v,) within this layer is approximated by

vi(x,,2,0) = VI(x,y,0¢'(2) )

where j = 1,2,..,N. N is the order of the polynomial expansion for the computational
layer. This approximation has been used to model perfectly bonded laminates (Reddy,
1987). The ¢/(z) are specified functions of the transverse coordinate z and the V/(x, y, )
are the velocity coefficients in the i~direction associated with the j-polynomial. Equation 2
admits any order of approximation because no restriction is placed on the order or func-
tional form of the ¢’/(z). The corresponding rate of deformation field within the layer is
given by

N\

Fig. 2. Plate geometry.
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i
Drj = E(Di.j'*‘vj‘i) 3)

where v; is provided by eqn 2. The formulation of the governing equations for the layer are
obtained from the application of the principle of virtual work (Washizu, 1968 ; Reddy,
1984).

-[<J. a,-jéD,»jdV-—J t;"év,-dS~ff,-5v,vdV—J‘ pﬁ,—évidV)dt =0 4)
4] 14 S oV 4

where o;; denote the Cauchy stresses, £} denote the surface tractions, f; are the body forces,
and p is the density. In the above equation, the appropriate volume to be used is that of
the layer given by V' = &, - Q (Fig. 2). The thickness of the kth layer is given by &, = 2+ —Z*,
where z**! and z* are the coordinates of the top and bottom of the layer, respectively. Q is
an arbitrary area corresponding to the midplane of the layer. S is the outer surface area of
the volume V.

Substituting eqns 2 and 3 into eqn 4 and integrating through the thickness (z) to obtain
an equivalent two-dimensional theory gives

f <§ (T,-’~N{;n(,)éV{ds+J (T4 N~ RI+F=IVSVI d.Q)dt =0
0\ Q

where 0Q denotes the boundary of Q and ds is the associated differential arc length.
Consequently, the appropriate equations of motion for the layer are

Ut N = R+ F, = IV} (%)
where m, j = 1,2, .., N. The corresponding inplane boundary conditions are

Vi= V" on
N’:“anm = T{ on aQ]l (6)

where 8Q = 8Q;+0Q,; and V7" are specified boundary velocities. The n, are the unit normals
along the boundary dQ. The first set of conditions in eqn 6 represent the essential boundary
conditions. The second set of conditions represent the natural boundary conditions. In
developing the above results the following definitions where used

M, = j o) dz @
. Zk*l .
m=f o, ¢, dz ®)
P
T = o ¢l ©)

zk+\
T = L ¢y dz (10)
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zk+|
Ff,:=j fid'dz ()
*
and
= L pd b dz. (12)

The terms ©/ are related to the interfacial tractions. The N/, and R/ are force resultants.
The FJ correspond to body force effects. The P” represent the inertial effects.

It is emphasized that eqns 5 and 6 represent the equations of motion and appropriate
boundary conditions, respectively, governing the response of a single computational layer.
A computational layer may be thinner than a typical lamina in a structure, of equal
thickness to a lamina, or it may be composed of several lamina. It is emphasized that these
equations were developed independently of any structural considerations related to the
laminated structure.

Explicit satisfaction of both the continuity of the interfacial tractions and the jump
conditions on the interfacial displacements are utilized to couple the equations governing
the behavior of different layers to obtain the governing equations for the laminate. These
interfacial conditions are given by

o ok = A (13)
and
o = o (14)

where A* represents the jump in the ith velocity component across the interface between
the kth+1 and kth layers. The constitutive relation for A is provided by an interfacial
constitutive model (eqn 1).

The interfacial constraints (eqns 13 and 14) are easily imposed if it is assumed that the
¢'(z) are Lagrange polynomials of order j. These polynomials have the following property

¢'(z)) = 9y (15)

where ¢, is the Kronecker delta. This property makes the satisfaction of the interfacial
constraints particularly simple. It is noted that the use of Lagrange polynomials is based
on convenience only. Substituting eqn 15 into eqn 9 gives

(©) = () = —ails
(@) = (@) = gilse
(¥)¥=0 forj=23...,N—1. (16)

Therefore, the interfacial traction continuity conditions, eqn 14, are satisfied by

@+ (@) =0. (17)

The jump conditions for the velocities (eqn 13) at the kth interface are satisfied by
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(VI — (VM) = A = f(AL, 1) (18)

for an Nth order Lagrange polynomial in z. Using eqn 16, the functional form for the
velocity jump (eqn 1) can be rewritten as

A = (AL, 7). (19)

Equation 19 is completely general but now the velocity jumps are expressed in a direct and
consistent fashion as a function of the fundamental unknowns in the theory. Additionally,
use of an interfacial function of the type given in eqn 19 can easily incorporate the constraint
that the layers cannot interpenetrate.

The equations of motion (eqn 5) subject to the interfacial constraints (eqns 17-19) in
conjunction with the layer boundary conditions (eqn 6) form the system of equations
governing the behavior of the laminated structure. The fundamental variables in the theory
are the layer velocity coefficients (%) and the interfacial tractions (7/).

The current formulation has several unique features that differentiate it from existing
theories. Any general interfacial constitutive law can be used to determine the behavior of
the structure in the presence of delaminations in a internally consistent fashion. Changing
the interfacial fracture behavior does not require a reformulation of the current theory.
This formulation is not restricted to modeling preexisting delaminations and can predict
the initiation and growth of delaminations anywhere within the structure. The growth of
these delaminations is not in any way restricted to a given location or direction. The current
approach can be directly applied to model the inelastic deformation of composite structures.
Furthermore, no restrictive assumptions regarding the constitutive response of the layers
have been imposed.

3. NUMERICAL IMPLEMENTATION OF THE DYNAMIC THEORY

This section discusses two types of formulations for the implementation of the dynamic
theory. The first section discusses a solution methodology based on the use of a Fourier
series approach to model the spatial derivatives in the cylindrical bending problem. The
second section discusses the implementation of a general, finite element formulation for the
theory.

Both numerical approaches utilize explicit time integration schemes to obtain the
solution. A forward difference is used to approximate the temporal derivative

bax—t (20)

where v is the current velocity at a point in the plate and ¢, is the value of the velocity at
the beginning of the time step (¢ = ¢,). Because an explicit integration scheme is used, the
spatial gradients used to advance the solution are evaluated using the velocity field at the
time ¢,. The computation techniques are initiated by determining the time-step size (A?),
which provides a stable solution.

3.1. Harmonic solution formulation

In the harmonic solution (HS) for an infinite strip, the spatial dependence is satisfied
exactly using Fourier series to describe the velocities. The velocity field, which satisfies the
boundary conditions, is given by

v, = V2¢/(z)cosp”x
v, =0
v. = VI'¢/(z)sinp'x 20
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where p” = nn/L and » is the harmonic number. Substituting the above velocity field and
the finite difference approximation (eqn 20) into the governing differential equations for
the plate theory (eqn 5) provides a system of equations for a layer (for each harmonic) of
the form

VT — AL = V(1) — K, UiAt (22)

where U{ are the displacement coefficients at time ¢,, and K, is a function of the geometric
and material properties of the layer as well as the harmonic number. It is emphasized that
the vector 7, 1s evaluated at the current time (f) while the right-hand side of eqn 22 is
evaluated at time ¢,. This system in conjunction with the interfacial conditions (eqns 17—
19) provides the necessary equations for the determination of the velocities (V/") and
interfacial stresses (t").

3.2. Finite element formulation

A general, finite-element (FE) formulation of the plate theory was developed to pursue
the dynamic response of composite structures. A finite element implementation is obtained
using the layer equations of motion (eqn 5). For convenience, the stresses are approximated
as

oy = ZJ(OW (x,1)¢" (2) (23)

where
()

are the values of the stresses at the nodal locations and ¢”(z) are the transverse shape
functions. A quadratic distribution was used in the transverse direction. A bilinear approxi-
mation was used for the inplane shape functions ¥“(x,y). The inplane stress gradients
necessary to compute the terms N/,, (eqn 5 and 7) were obtained using the Mean Value
Theorem. For example, for an arbitrary interior node

<"L> = ( f p 921 dQ)a;’_./f‘P’" do (24)
ox x

where the area integrals include the four inplane elements surrounding the mth node. There
is no summation on the subscript m in eqn 24. A similar expression was used to obtain the
partial derivatives with respect to the y-direction. Similar to the harmonic solution, an
explicit formulation was used to advance the equations in time. That is, the left-hand side
of eqn 5 is assumed to be known, using values from the previous time step. The equations
of motion, coupled with continuity of interfacial tractions and the interfacial constitutive
equation, provide a system of equations for the through plane velocities (#7) and interfacial
stresses (t{) for each position (x,, y,) on the plate. The formulation provides for doubly
defined velocities on the layer interfaces. To reduce the number of equations, the interfacial
constitutive relations were used to eliminate the velocities at the bottom of each com-
putational layer. For each time step of the finite-element formulation, the solution procedure
is advanced by applying the following steps:

(1) the stress gradients (eqn 24) are calculated

(2) the governing equations (eqns S, 6 and 17--19) are solved for the nodal velocities and
interfacial tractions at each position (x,,, v,)

(3) the displacements are updated for graphical output

(4) the velocity gradients, which are used to determine the rate of deformation tensor
(eqn 3), are updated
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(5) the constitutive model for the lamina is used to update the nodal stresses.

Steps (1) through (5) are invoked until the end of the problem (t.,4) is reached. Similar to
the stress gradients, the velocity gradients necessary to compute the rate of deformation
tensor (eqn 3) for step 4 are computed using the Mean Value Theorem. That is, dv,/Cx, are
obtained using a relation sirnilar to eqn 24 with the surface (Q) integrals replaced by volume
integrals and using a tri-linear shape function ¥™(x, y, z).

The FE implementation of the theory is limited to small deflections because it is
assumed that the model parameters in the current configuration can be obtained at the
locations of the undeformed configuration. It is felt that this is a reasonable assumption
for graphite reinforce composites, which fracture at relatively small strains. Furthermore,
the sample problem considered are only carried out to small strains. The generalization of
the FE implementation for large deformations would simply require updating the model
parameters on the current configuration.

4. RESULTS

The proposed plate theory is used to consider the influence of delaminations on the
dynamic response of composite cross-ply plates subjected to cylindrical bending. The
cylindrical bending problem is based on the analysis of a simply supported infinite strip.
The geometry of the cylindrical bending problem is provided in Fig. 3. The perfectly bonded
solution is provided by Pagano (1969). Further details of the cylindrical bending problem
for delaminated plates are given by Williams and Addessio (1996). The sample problems
have been chosen for convenience. The simple geometries used in the simulations have
potential applications in experimental investigations for the characterization of composite
interfacial properties. To model more complex composite structures, it is necessary to
include a larger number of laminates in the simulations. This can be accomplished using
one of two approaches. More computational layers can be included in the simulations or
an homogenization theory can be added to the theory, allowing each computational layer
to model more than one laminae.

The following conditions are assumed to apply to all of the results. The plate aspect
ratio, (S) is assumed to be 5. Thus, the plate can be considered to be thick. Because of the
relatively small aspect ratio, shearing deformations in the transverse direction are important
for this case. The effective material properties of the lamina are given by

E JEr =25 Gup/Er=0.5 vip=vr =025 p=156g/cm’ (26)

where the subscripts 7 and L represent the transverse and longitudinal directions in the
lamina principle coordinate system, respectively. These material properties represent the
elastic behavior of a unidirectional graphite fiber-reinforced, epoxy matrix (Gr/Ep) com-

q(x)

<> —p

- L >
Fig. 3. Cylindrical bending geometry.
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posite system. For this study, the delamination constitutive model is assumed to be linear
(Aboudi, 1991) and is given by

Ai = RTiz (27)

where the interfacial stiffness (R) may differ for the normal (R,) and shear (R,) responses,
respectively. The laminates are assumed to be perfectly bonded initially, for the simulations
considered.,

The nondimensional parameters originally proposed by Pagano (1969) are used in
presenting the results

O'tx = - Z*Z = Ez.i Ufz = O-)z
q q q
o Erte L 0OE R,
) hq Lig
L : RE
S=7 =2 w7 R == (28)

In eqn 28, A is the total laminate thickness and L is the plate length. For the current study,
the loading is represented by the first term in a half sine series (g). All approximate
plate theory results presented are generated using a second order theory [i.e. a quadratic
polynomial is used for ¢/(2)].

The first case considered is the quasi-static deformation of a cross-ply (0°/90°) plate.
This case is intended to provide a limiting validation of the solution methodology. The
fibers in the bottom lamina (90°) are aligned in the y-direction. The fibers are aligned in
the x-direction (0°) in the top lamina. Each lamina is composed of two computational
layers. Values of R¥ = 50 and R¥= 25 were used for the normal and shear interfacial
stiffnesses, respectively. The through the thickness distributions of the axial displacement
(u¥) for the exact (Williams and Addessio, 1996) and HS at the edge of the plate (x* = 0.0)
are presented in Fig. 4. It may be seen that the correlation between the HS and the exact
result is excellent. The displacement jump due to delamination is accurately predicted by the
approximate theory with only negligible differences between the two results. The deviations
between the exact and HS results are less than 0.4% of the overall change in the displacement
through the thickness at all locations. Equally good agreement is obtained for the dis-
tributions of the transverse displacement (#*) and axial stress (0¥ ) through the thickness.
These comparisons are not provided in this paper.

The second case examines the influence of the different levels of discretization through
the thickness on the behavior of a plate loaded dynamically under a transverse monotonic
tensile load. Both the HS and FE formulations are considered. For this simulation, a
linearly increasing load is applied for 5 us. The laminate consists of a 0°/90° lay-up with
the 90° lamina on the bottom of the plate. The results obtained from the harmonic solutions
are considered first. To generate these results the individual lamina were discretized using
1, 2 and 10 computational layers per lamina. Also included in the figures (Figs 5-8) for this
case are the perfectly bonded results as predicted using 2 layers per lamina. The values for
the interfacial stiffness parameters (R} and R¥) are arbitrarily assumed to be 1.0.

The structural response, as represented by the normalized transverse deflections at the
interface between lamina of the plate as a function of time, is provided in Fig. 5. Examination
of this figure indicates that, in general, using two or more computational layers per lamina
results in very little deviation in the predictions. The transverse deflections above and below
the interface (z* = 0) exhibit increasingly greater differences as the loading increases for all
levels of discretization. At a time of 5 us the relative difference in the magnitudes is about
25% (for the converged response). It is important to note that the current approach
correctly precludes the interpenetration of adjacent larmina. Comparison of the perfectly
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Fig. 4. Axial displacement distribution at x* = 0.0 for a 0°/90° plate for quasi-static conditions.

bonded and delaminated responses shows that the perfectly bonded response falls between
the transverse deflections at the top and bottom of the interface in the delaminated cases.
As expected, the presence of a delamination delays the onset of significant transverse
deflections at the bottom surface as compared to the perfectly bonded case. Using two
layers per lamina results in only minor differences (about 1.5% of the magnitude at 5 us)
between 1.75 and 2.5 ps compared to the results using 10 layers per lamina. After 2.5 ps,
the predictions obtained using two layers per lamina converge to those obtained using more
through the thickness refinement. It is useful to consider the behavior predicted using one
layer per lamina because this case results in the smallest computational times. Examination
of these figures does indicate that the use of a single layer per lamina results in some
deviations in the predictions compared to the results obtained using higher levels of dis-
cretization, At a time of 2.2 us the use of one layer per lamina causes the transverse
deflection to drop below zero reaching a value of about —0.006. When higher discretizations
are used, the deflection remains essentially zero. However, this difference only represents
about 2.2% of the total deflection at a time of 5 us. As the loading increases, the predictions
using one layer per lamina converge to the results predicted using finer levels of discre-
tization. After about 4 us some deviation again is observed, with the results predicted by
the single layer per lamina case being larger than the other cases by about 3%. The
above results demonstrate that the proposed model can predict the structural response
using only one computational layer per lamina.

The distributions of the axial displacement (#¥) through the thickness of the plate at
x* = ( for the second simulation is given in Fig. 6. All levels of discretization predict the
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Fig. 5. Transverse deflections at x* = 0.5 for a 0°/90” plate for dynamic conditions for the mid-
plane response.

same general trends in the variation of ¥ through the thickness. The general predicted
behavior exhibits a contraction in u} at the top surface. This behavior is consistent with the
simply supported boundary conditions, which allow lateral motion and rotation of the
ends. Much of the dynamic response is restricted to the top lamina for this loading situation.
The axial displacements at the top and bottom of the upper lamina represent the extremes
in the distribution. The bottom lamina exhibits a total change in the displacements that is
only about one third of the displacement for the top lamina at 5 us. The bottom surface
has not been significantly influenced by the applied loading and the displacement is nearly
zero. The displacement jump resulting from delamination represents about 10% of the
change in the extremes of the distribution. Therefore, delamination can be considered to
be a significant deformation effect for this case. Comparing the perfectly bonded and
delaminated predictions shows that the perfectly bonded case exhibits trends, which are
similar to the delaminated results. As the distance from the interface increases, the two sets
of results converge. At the interface, the perfectly bonded predictions fall between the
delaminated results, as expected. The perfectly bonded results do not bisect the displacement
jump at the interface in the delaminated case but fall closer to the displacement value
observed in the lower lamina. Using two or more layers per lamina in the analysis results
in essentially converged predictions. Use of only one layer per lamina results in deviations
in the top layer near the interface and at the outer surface of the bottom lamina. The
magnitude of the displacement jumps predicted by all levels of discretization exhibit neg-
ligible differences. This trend is due to the fact that the interfacial tractions are treated as
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Fig. 6. Axial displacement distribution at x* = 0.0 for 0°/90° plate for dynamic conditions at
t=S5pus.

fundamental variables and are relatively independent of the level of discretization used in
the analysis. The level of discretization used, however, does cause a shift in the values of
u¥ above and below the interface. When 1 layer per lamina is used, the values of u¥ are
shifted to slightly smaller values at these locations as compared to the higher levels of
discretization.

The transverse deflection (#¥) distribution through the thickness of the laminate at the
midplane (x* = 0.5) is presented in Fig. 7 at 5 us. The agreement in the predictions obtained
using all degrees of discretization is good with only small deviations. A maximum deviation
of about 1.5% is observed in the case where the behavior of the plate is modeled using one
layer per lamina. As expected, the predictions indicate that the current dynamic loading
results in most of the response occurring in the upper lamina. The maximum deflection in
the lower lamina, which occurs at the interface, represents only about 25% of the total
maximum deflection. The displacement jump represents an additional 6.8% of the total
deflection. As observed in the axial displacement distributions, the perfect bonding case
falls within the jump observed for the delaminated behavior. The magnitude of the deflection
in the perfect bonding case is closest to the response in the lower lamina at the interface for
the delaminated case. As the distance increases away from the interface, the perfectly
bonded and the delaminated distributions converge.

The axial stress (¢¥,) distribution through the thickness at x* = 0.5 is presented in
Fig. 8 at 5 us. As in the previous results all levels of discretization predict the same general
distributions. Much of the dynamic loading is supported by the top lamina as indicated by
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Fig. 7. Transverse deflections at x* = 0.5 for a 0°/90" plate for dynamic conditions at 1 = 5 us.

the fact that the top lamina supports both extremes in the stress. This is consistent with the
fact that the dynamic loading is applied at the top surface and that the top lamina is
significantly stiffer in the x direction than the bottom lamina. All levels of discretization
except for the case of one layer per lamina exhibit negligible deviations. In the case where
the behavior of the laminate is modeled using one layer per lamina, appreciable deviations
can be observed in the top lamina in the region near the interface. However, at the interface,
all levels of discretization predict the same magnitude for the jump in the distribution.
Comparison with the perfectly bonded case indicates that the influence of the delamination
occurs primarily in the regions nearest to the interface. In the case of the bottom (90°)
lamina this influence is small. However, in the top (0°) lamina the presence of the delami-
nation increases the magnitude of the compressive stress at the interface by 16%.

The FE predictions also are provided in Figs 5-8 for comparison with the harmonic
formulation. It is noted that the FE predictions exhibit convergence behavior that is
equivalent to the trends observed in the predictions obtained from the harmonic formu-
lation. The gross structural behavior as given by the transverse deflection versus time
predicted by the FE solution exhibits negligible differences with the corresponding behavior
predicted by the HS (Fig. 5). Comparison of the HS and FE model predictions for the
distribution of u}¥ (Fig. 6) shows that the two formulations agree closely. Relatively minor
variations of about 2% in the distribution can be observed in the region around the
interface. The differences in the displacement jumps between the FE and HS is about 8%
of the magnitude of the displacement jump. Good agreement is obtained for the FE and
harmonic predictions for the distribution of u* as well as the jump in the transverse
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Fig. 8. Axial stress distribution at x* = 0.5 for a 0°/90° plate for dynamic conditions at ¢ = 5 us.

displacement (Fig. 7). The axial stress distributions (Fig. 8) predicted by the two approaches
also are in good agreement. The largest variations between the predictions of the two
solutions occur in the 0° layer in the region near the top surface. These deviations can be
primarily attributed to the small variations in the axial displacement in the regions near the
surface.

Next, an impulsive tensile loading followed by free vibration is considered. The impul-
sive load reaches a maximum at 1 us. The load is subsequently reduced to zero over another
microsecond. The plate (0°/90°) then is allowed to vibrate freely for the next 1000 us. The
normalizing load in this case is the maximum applied load during the initial impulse. The
interfacial stiffness parameters (R} and R¥) are assumed to be 10 for this case. The time
dependent transverse deflection (u*) at the interface of the laminate for both the perfectly
bonded and delaminated cases is presented in Fig. 9. The perfectly bonded case exhibits
sinusoidal behavior with constant periods of oscillation and peaks. The period in the
perfectly bonded case is about 155 us. The peak value is nearly 0.2. The behavior in the
presence of the delamination is significantly different. The period of oscillation is again
constant and has a similar magnitude as the perfectly bonded case. Unlike the perfectly
bonded case, the presence of the delamination results in divergent deflections at the top
and bottom surfaces of the interface. The magnitude of the deflection at the top surface
continues to increase while the magnitude becomes more negative at the bottom surface as
time increases. The rate at which the magnitude in the deflection is changing is greater for
the bottom surface than the top surface. This difference in the rates of growth of these two
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deflections results in the magnitude of the deflection at the bottom surface being significantly
larger than the deflection at the top surface. The rate at which these magnitudes are
changing decreases as time increases. The small oscillations superimposed on the general
sinusoidal response result from wave interactions with the plate boundaries and the inter-
faces. The initiation and growth of delamination may be observed from Fig. 9, where the
jump in displacement across the interfaces evolves as the simulation progresses.

Finally, consider a ramping load, which is applied for 1 us and subsequently held at
the maximum load for 4 us. The laminate lay-up is (90°/07/90°/0°/90°) where each of the
lamina has an equal thickness. The interfacial stiffnesses (R*and R¥) are assumed to be 1.0
for all of the interfaces between the 90° and 0° lamina. Results are presented for the
situations where each lamina is modeled using two computational layers. It is noted that
higher levels of discretization predict behavior which does not significantly deviate from
the case where each lamina is modeled using two computational layers. Using one layer per
lamina results in relatively minor deviations.

The macroscopic transverse deflection () for the top surface of the lamina at x* = 0.5
as a function of time is provided in Fig. 10. It is interesting to note that the deflection at
the top of the laminate exhibits an oscillatory behavior about a mean response. These
oscillations are due to wave reflections from the delaminated interfaces and the boundaries
of the plate. The delaminations act as changes in the impedance of the material. This
impedance change results in waves being reflected from the interface. Oscillations are not
observed in the perfectly bonded case, which is not provided, until the waves reflected from



100 T. O. Williams and F. L. Addessio

0.20 L T T T T T — T
o——o Harmonic Solution
z—=a FE Solution
0.15
“3~ 0.10 -
0.05 i
OOO (% —l : i —
0.0 3.0 4.0 5.0

t (us)
Fig. 10. Transverse deflections at x* = 0.5 for 90°/0°/90°/0°/90° plate for dynamic conditions.

the bottom surface of the plate reach the top surface. The period of these oscillations is
much longer for the middle surface than for the top surface. Comparison of the FE solution
predictions with the HS results indicates that the overall trends predicted by both solution
schemes are in reasonable agreement. However, a phase shift is present between the oscil-
lations predicted by the two solution approaches. Additionally, the magnitude of the
oscillations predicted by the FE model are larger than the HS predictions. These differences
are a result of the implementation of the Mean Value Theorem in the FE approach for the
calculation of the spatial gradients. The averaging affects the strains within the lamina.
This results in a faster wave propagation speed for the FE model than for the HS where
the averaging is not used. This change in the wave speed results in the phase shift because
the reflected waves reach the top surface faster for the FE predictions. An estimate of the
wave speed in the transverse direction using ¢y = \/Cn /p indicates that the approximate
time for a reflected wave from the first interface to reach the top surface is given by 24,/cr.
This estimation closely approximates the predictions given by the HS. It is noted that as
the interfacial stiffnesses (R¥ and R¥) increase the oscillations increase. This latter result is
not provided in the figure.

Next, the distribution of the transverse (u*) deflection through the thickness of the
laminate as a function of time (Fig. 11) is considered. Consistent with expectations, the
depth of the wave and, therefore, the displacement magnitudes increase as the time increases.
In particular, the rough approximation of the transverse wave speed 1s in good agreement
with the predicted evolution of the depth of the response. Examination of the distributions
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different times.

in the lamina indicates that the evolution of the magnitudes of the displacement is fluctuating
as a function of time. Therefore, the slopes of the distributions change as a function of
time, which implies that the strain and stress fields do not evolve in a linear fashion. This
fluctuation of the slopes in the distributions results from wave reflections. The fluctuation
in the fields has a strong effect on the stresses. The displacement jumps at the interfaces
also exhibit a nonlinear evolution as a function of time. This fluctuation amounts to changes
of about 25% in the magnitude of the jump at the first interface between 2 and 5 ps. It is
noted that the relative magnitudes of the jumps for the three interior interfaces is very
similar, which indicates that the transverse stresses at these locations are similar in magni-
tude. As observed in the previous cases, the displacement jumps at the different interfaces
constitute about 20% of the overall change in displacement at 5 us. For comparison, the
FE predictions at 5 us also are plotted on this figure. It can be seen that the agreement is
excellent.

The through the thickness distributions of the axial displacement (z¥) as a function of
time are given in Fig. 12. As observed in the previous cases, the top part of the laminate
supports most of the dynamic loading. The extreme values in the distribution occur at the
top surface, where the largest negative value is observed, and at the second interface from
the top, where the maximum value is observed. At locations below the midplane the
distribution rapidly decays and approaches zero at the bottom surface. Under the applied
load, the top surface of the plates moves inward while the midplane extends. This response
is consistent with the imposed boundary conditions. As time increases the locations of the
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different times.

extreme values remain unchanged, while the magnitudes of the displacements at these
locations continue to grow. Also, at later times the dynamic effects propagate further into
the laminate and therefore more deformation is observed in the lamina closer to the bottom
surface. It is important to note that a reversal in the direction of the evolution of the
deformation field in the region around the first interface from the top surface occurs, i.e.,
the axial acceleration is initially positive through the first 4 us but is negative by 5 us.
Consideration of the slopes of the field within the different lamina indicates that both the
magnitude and sign of these slopes change as a function of time. This results in nonlinear
distributions for the displacements and rapid variation in the lamina stress field. Con-
sideration of the displacement jumps at the interfaces shows that significant variation in
the magnitudes of these jumps is present from interface to interface. At 5 us, the maximum
relative difference is about 333%. This difference in the displacement jumps is caused by
the significant variation of the transverse shear stresses. These stresses are greatest in the
inner lamina and decay to zero at the outer surfaces of the plate. Fluctuations in the
magnitudes of these jumps as a function of time, similar to those observed in the transverse
displacement distribution, can be observed. It is noted that as time increases the relative
magnitudes of the displacement jumps at the interfaces is largest at locations interior to the
laminate. This indicates that the shear stress propagates into the laminate with increasing
magnitude as time increases. The initiation and growth of delamination may be observed
from Figs 11 and 12, where the jump in displacement across the interfaces evolves as the
simulation progresses.



Laminated plates with delaminations 103

0.50 - T - T - l

o—o HS : 1 us

e—a HS : 2 us

o—=o HS : 3 us

v——=v HS : 4 us

*——* HS : 5 us

OFE:
0.25 | .
W 000 f ]
025 | ]
-0.50 : - : = . L :
-0.75 -0.50 -0.25 0.00 0.25 0.50

c_*
xx
Fig. 13. Axial stress distributions at x* = 0.5 for a 90°/0°/90°/0°/90° plate for dynamic conditions
at different times.

The axial stress distribution (¢%, ) as a function of tirne at x* = 0.5 is presented in Fig.
13. It can be seen that the stress distribution changes rapidly and in a nonlinear fashion as
a function of time and spatial location within the laminate. First the behavior in both of
the 0° lamina is considered. In the upper 0° lamina, the axial stress grows in an initially
tensile fashion. However, between 2 and 3 us the magnitude of the stress decreases and by
4 us the stress is almost fully compressive. Another reversal occurs between 4 and S us
causing the top eighth of the lamina to be in tension and the rest to be in compression.
Similar trends are present in the lower 0° lamina although the effects occur at much later
times and the distributions are reversed. Consideration of the responses of the three 90°
lamina shows that in all cases the current loading situation results in purely tensile axial
stress distributions. This is an important observation because these types of stresses could
result in transverse cracking in the lamina due to the generally low transverse tensile strength
of Gr/Ep composites. While oscillations from tension to compression to tension were
observed in the 0° lamina, the top 90° lamina exhibits oscillations in the axial stress
magnitudes which are purely tensile. In particular, for the first 3 us the axial stress in this
lamina grows increasingly tensile. Between 3 and 4 us the magnitude decreases but remains
tensile. Between 4 and 5 us the magnitude again grows.

Results for the FE predictions also are provided for the axial displacement (Fig. 12)
and stress field (Fig. 13). Good agreement is shown for the HS and FE predictions for the
axial displacements. Relatively minor variations of approximately 8% may be observed for
the jumps in the interfacial displacement. Larger variations in the comparison of the
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axial stress field were obtained. The differences between the two simulations again can be
attributed to the method of calculating spatial gradients for the HS and FE formulations.

5. CONCLUSIONS AND SUMMARY

A dynamic, higher-order theory for laminated plates based on a discrete layer analysis
has been presented. The formulation includes the effects of delaminations between the
layers of the plate. The mode! implements a generalized displacement formulation at the
lamina level. The governing equations for the lamina are derived using variational prin-
ciples. The equations governing the behavior of the laminate are developed by coupling the
layer equations through both the interfacial traction continuity conditions and the inter-
facial displacement jump conditions. The fundamental variables in the governing equations
are the velocities in each layer (v;) and the interfacial tractions (z,).

The theory is not limited to the analysis of thick or thin laminated plates. The approach
developed in this paper is applicable to large deformations. However, the numerical
implementation of the theory is limited to small deformations because of the assumption
that model parameters in the current configuration can be obtained at the locations in the
undeformed configuration. It is felt that this is a reasonable assumption for graphite
reinforced composites, which fracture at relatively small strains. Furthermore, the cyl-
indrical bending problem used to validate the model was only carried out to small strains.
The generalization of the numerical implementation for large deformations would require
updating the model parameters on the current configuration. Therefore, a large deformation
formation of the plate theory is a straight-forward extension.

The jumps in the interfacial velocities are expressed in an internally consistent fashion
as functions of the interfacial tractions. The use of the interfacial tractions as fundamental
unknowns is important in predicting delamination behavior in an internally consistent
fashion. The formulation has been carried out in a sufficiently general fashion that any
constitutive model for the delamination behavior at the interfaces may be incorporated
into the theory. No restrictions on the size, location, distributions, or direction of growth
of the delaminations have been imposed in the theory. It was demonstrated that the current
theory can predict the initiation and growth of delaminations at any interface as well as
any interactive effects between delaminations at different locations within the structure.
Also, the effects of delamination have been included without restrictions on the constitutive
description for the lamina.

It is noted that the computational layers on which the analysis is based can consist of
subregions of a lamina, an entire lamina, or several lamina. The ability to incorporate
several lamina into a layer would be beneficial in situations where homogenization of a
repeated stacking sequence can be used. Furthermore, any general constitutive model may
be used to model the response of the lamina.

The generalized plate theory was used to consider the effects of delamination on
composite structures under the conditions of dynamic loading. Solutions to the generalized
plate theory were obtained both in terms of an harmonic formulation and a general finite-
element formulation. Simulations were provided using a linear anisotropic constitutive
model for the layers and a linear interfacial constitutive model. Elastic properties for a
graphite fiber-reinforced, epoxy matrix composite layers were used in the simulations. Small
aspect-ratio (thick) plates were considered in the analyses. Thick geometries provide a
challenge for plate theories because of the large through thickness variations in the stress
and strain fields. The harmonic formulation was used to validate the theory by comparisons
with closed form solutions for a cylindrical bending problem in the quasi-static limit.
Excellent agreement was obtained between the harmonic plate solution and the exact
cylindrical bending results. The harmonic formulation also was used to investigate the
resolution necessary to generate accurate results. Typically, converged results were obtained
using two computational layers per lamina. In general, it was found that only one com-
putational layer per lamina provided a sufficiently accurate analysis. Consequently, accurate
results can be obtained in an economical fashion.
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The harmonic solution was used as a partial validation of the FE formulation for
dynamically loaded plates. In general, the comparisons between the harmonic and FE
solutions were excellent with differences of approximately 8% between the results. Dis-
crepancies observed between the harmonic and FE results could be attributed to the
different techniques used to generate spatial gradients. For the harmonic formulation,
local spatial gradients were obtained using the series representation for the velocity fields.
However, the FE formulation relied on the Mean Value Theorem to generate spatial
gradients, which resulted in a nonlocal description. This resulted in differences in the wave
propagation speeds and a subsequent phase shift in the predicted responses.

In the cases considered, delamination was shown to have a significant influence on the
displacement and stress fields within the plate. Comparison of simulations, modeling both
perfectly bonded and delamination responses, resulted in significant differences in the
vicinity of the inter-ply regions. It was shown that the displacement fields for perfectly
bonded conditions could not be expected to bisect the displacement distributions, which
were obtained when delamination was modeled. The results for both the perfectly bonded
and delamination responses converged at locations removed from the interfacial regions.

The dynamic simulations displayed the influence of wave interaction phenomena.
Wave propagation through the layers and reflections from the interfacial regions can result
in large oscillations of the stress and strain fields through the thickness of the structure.
Large stress reversals as well as large differences in the stress fields across the interfacial
regions were observed. These effects could exacerbate the potential for damage in layered
materials.
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